Перевод: со всех языков на английский

с английского на все языки

основное описание

  • 1 основное описание

    Polygraphy: main entry

    Универсальный русско-английский словарь > основное описание

  • 2 основной

    Основной - basic, major, principal, fundamental, underlying, key, primary, main
     Whether in recognition of this or for less incisive reasons, no distinctions is often made between the tip coefficient and that for the principal surface.
     This criterion of permitting inspection of the primary-flow measuring device is fundamental to an acceptance test with no measuring tolerance (... является основным для приемочного испытания...).
     These many examples show that one underlying mechanism persists.
    —обращать основное внимание на
    —основное внимание обращается на
    —основное внимание при измерениях было сосредоточено на
    —основной упор в работе сделан на
    —останавливаться в основном на

    Русско-английский научно-технический словарь переводчика > основной

  • 3 основной

    (= центральный, определяющий, доминирующий) basic, basis, fundamental, principal, main, key, primary, essential, general, major, dominant, chief
    Безусловно, это следует сделать точно, однако в основном это означает, что... - This has to be made precise of course, but essentially it means that...
    В основном мы следуем процедуре (= методу)... - In essence we follow the procedure of...
    В основном он используется в/ при... - It is principally used in...
    В основном имеется лишь один способ, чтобы... - There is essentially only one way to...
    В основном мы занимаемся (чем-л). - We are concerned, for the most part, with...
    В основном существуют два типа... - There are basically two types of...
    В основном это обобщение (чего-л). - This is essentially a generalization of...
    В основном это проблема (чего-л). - - This is essentially a matter of...
    В третьей главе мы увидим/встретим другое обобщение той же самой основной идеи. - In Chapter 3 we shall meet another generalization of the same basic idea.
    В этой книге мы будем заниматься в основном... - In this book we shall be concerned essentially with...
    Возвращаясь теперь к доказательству основной теоремы, мы... - Returning now to the proof of the main theorem, we...
    Основная часть вопрос... все еще остается без ответа, хотя... - The question of... is still largely unanswered, although...
    Вычисления в основном являются такими же, как... - The calculations are essentially the same as...
    Здесь мы, в основном, интересуемся... - Here we are mainly interested in...
    Имеется много других примеров, иллюстрирующих основную идею (чего-л). - There are many other examples which illustrate the basic idea of...
    Имеются два основных типа (уравнений и т. п.). - There are two major types of...
    Кажется, имеются две основные причины (для)... - There seem to be two principle causes for...
    Напротив, метеоролог рассуждает в основном в терминах... - The meteorologist, on the other hand, thinks mainly in terms of...
    Наш основной результат состоит в следующем. - Our main result is the following.
    Наш основной результат состоит в том, что... - Our main result will be that...
    Нашей основной целью является описание систематических методов для... - Our first concern is to describe systematic methods for...
    Однако в приложениях в основном более полезно думать о... - In application, however, it is generally more useful to think of...
    Основная проблема состоит в том, чтобы определить... - The main problem is to determine...
    Основное (= существенное) требование, предъявляемое к... состоит в том, чтобы... - The essential feature required of... is that...
    Основное преимущество данного метода заключается в том, что... - The chief advantage of the method is that...
    Основной идеей здесь является то, что... - The essential idea here is that...
    Основной идеей этого параграфа является то, что... - The main idea of this section is that...
    Основной слабостью метода является... - The main weakness of the method is...
    Основной упор в данном параграфе будет сделан на... - The main emphasis in this section will be on...
    Основной целью данной книги является... - The principal aim of the present book is to...
    Основным вопросом данной главы является... - Our main business in this chapter is to...
    Основным моментом (здесь) является то, что... - The fundamental point is that...
    Основным пунктом является то, что... - The main point is that...
    Пример 3 иллюстрирует основной принцип... - Example 3 illustrates the general principle that...
    Существует несколько основных причин для... - There are several basic reasons for...
    Существуют три основных критерия, управляющих... - There are three major criteria governing...
    Существуют три основных способа сделать это. - There are three principal ways in which this can be done.
    Таким образом, важно узнать основные свойства... - Thus, it is important to understand the basic properties of...
    Таким образом, получен следующий основной результат:... - The following key results are therefore obtained:...
    Элегантное доказательство, которое мы здесь приводим, в основном принадлежит Гильберту. - The elegant proof we give is essentially due to Hilbert
    Эти две основные возможности иллюстрируются на рис. 1. - The two main possibilities are illustrated in Figure 1.
    Это делается в основном потому, что... - This is done, essentially, because...
    Этот результат в основном согласуется с... - This result is broadly consistent with...

    Русско-английский словарь научного общения > основной

  • 4 игра

    1. game

     

    игра
    матч

    Две команды, играющие определенное количество эндов с целью выявления победителя.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    игра
    Формализованное описание (модель) конфликтной ситуации[1], включающее четко определенные правила действий участников (игроков), добивающихся выигрыша в результате принятия той или иной стратегии. Это основное понятие теории игр удобно разъяснить на примере матричной игры с нулевой суммой. Матричные игры — те, в которых каждый из игроков имеет определенное число стратегий. Выражение «с нулевой суммой» означает, что выигрыш одного игрока есть проигрыш другого. Итак, рассмотрим И. с нулевой суммой. Выигрыш каждого игрока зависит от того, какие стратегии выбрал и он, и его противник. Считается, что значение каждого возможного выигрыша известно, и все они сводятся в таблицу (матрицу игры), где по строкам размещаются стратегии игрока X, а по столбцам — стратегии игрока Y (см. табл. к статье Матрица игры). Элемент Uij этой таблицы обозначает выигрыш X и проигрыш Y при выборе первым из них стратегии xi, вторым — yj. Смысл игры — в нахождении оптимальной стратегии, т.е. такой, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средний выигрыш (или, что то же, минимально возможный средний проигрыш). Поскольку игроку X не известно, какую стратегию выберет Y, то самому X разумно выбрать стратегию, рассчитанную на наихудшее для него поведение противника (принцип так называемого гарантированного результата). Действуя осторожно и считая противника тоже разумным, X выберет для каждой своей стратегии xi (i = 1, 2, …, n) минимально возможный выигрыш. Затем — такую стратегию, при которой выигрыш будет максимальным из всех минимальных. Это обозначается так: Найденная точка называется максимином, или максиминным выигрышем стороны X. Однако и игрок Y будет рассуждать совершенно аналогично. Он найдет сначала для себя наибольшие проигрыши по всем стратегиям противника, а затем из этих максимальных проигрышей выберет минимальный, т.е. минимаксную точку, обозначаемую так: Принцип, по которому поведение или стратегии выбираются из расчета наихудшего для себя поведения противника, получил название принципа минимакса. В случае, если минимакс равен максимину, решения противников будут устойчивы, т.е. И. имеет седловую точку, или равновесие. Устойчивость решений состоит в том, что при этом всякий отход от избранных стратегий будет невыгоден обоим противникам. Иное дело, когда минимакс не равен максимину. В этом случае решения обоих игроков, если они хоть как-то распознали выбор стратегии (намерения) противника, оказываются неустойчивыми. В теории игр доказывается, что при многократном массовом повторении И. и смешанных (разных в каждом розыгрыше) стратегиях седловая точка и устойчивые решения все же имеют место. Однако в этом случае в каждом ходе обеим сторонам рекомендуется выбирать стратегию просто по жребию, ибо иначе противник, обнаружив какие-то закономерности в решениях игрока, может предугадать ход и выиграть. См. также: Антагонистические игры, Бескоалиционные игры, Бесконечные игры, Биматричная игра, Дифференциальные игры, Игра с “природой”, Игры с непротивоположными интересами, Игры с ненулевой суммой, Игры с нулевой суммой, Конечные и бесконечные игры, Кооперативные игры, Матричные игры, Некооперативные игры, Парные игры, Позиционные игры, Прямоугольные игры. [1] В случае игры с непротивоположными интересами имеется в виду не конфликт, а неполное совпадение интересов сторон, имеющих общие цели.
    [ http://slovar-lopatnikov.ru/]

    EN

    game
    Two teams playing a specified number of ends to determine a winner.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > игра

  • 5 онтология

    1. ontology

     

    онтология
    Это структурная спецификация некоторой предметной области, ее формализованное представление, которое включает словарь (или имена) указателей на термины предметной области и логические выражения, которые описывают, как они соотносятся друг с другом. Является расширением Систематики, добавляющее определение связи между объектами, а также правила вывода и связанные действия.
    Краткое определение: Формализованное представление основных понятий предметной области и связей между ними.[http://www.kmtec.ru/publications/glossary/#Stakeholders].
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    3.70 онтология (ontology): Лексикон специализированной терминологии вместе с некоторой спецификацией значения терминов в лексиконе.

    Примечание 1 - Структурированный набор относительных терминов, представленный с описанием значения терминов в формальном языке. Описание значения объясняет, как и почему термины соотносятся, условия, как этот набор сегментирован и структурирован.

    Примечание 2 - Основополагающий компонент языка технологических спецификаций ИСО 18629 - это онтология. Примитивные концепции в онтологии, соответствующей ИСО 18629, достаточны для описания основных производственных, инженерных и бизнес-процессов.

    Примечание 3 - Основное внимание онтологии обращено не только на термины, но и на их значение. Произвольный набор терминов включен в онтологию, но эти термины могут приниматься, только если в их значении есть согласование. Это предполагаемые семантики терминов, которые могут быть сочетаемы, а не просто термины.

    Примечание 4 - Любой термин, используемый без точного определения, может быть причиной неясности и путаницы. Сложность для онтологии в том, что структура нуждается в создании терминов с точным значением внутри нее. Для онтологии ИСО 18629 необходимо предоставить математически строгую характеристику информационного процесса, а также четкое выражение основных логических свойств этой информации по языку ИСО 18629.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > онтология

  • 6 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

См. также в других словарях:

  • Описание персонажей аниме «Моя Богиня!» — Эта статья о персонажах. Об аниме и манге см. «Моя Богиня!». Главные герои Кэйити Морисатоnihongo no namae|Кэйити Морисато|森里 螢一|Morisato Keiichi студент Технологического института Некоми и член Мотоциклетного клуба института. Однажды …   Википедия

  • Описание персонажей аниме "Моя Богиня!" — Основная статья: Моя Богиня! 1 Главные герои 1.1 Кэйити Морисато 1.2 Верданди 1.3 Урд 1.4 …   Википедия

  • Описание персонажей аниме «Моя Богиня!» — Основная статья: Моя Богиня! 1 Главные герои 1.1 Кэйити Морисато 1.2 Верданди 1.3 Урд 1.4 …   Википедия

  • Международное стандартное библиографическое описание — или ISBD это набор правил описания, составленный Международной федерацией библиотечных ассоциаций и учреждений (IFLA) для описания широкого спектра библиотечных материалов. Сводное издание ISBD было опубликовано в 2007 году. Оно заменило более… …   Википедия

  • Main entry — Основное описание …   Краткий толковый словарь по полиграфии

  • Алгоритм Полига — Алгоритм Полига  Хеллмана (также называемый алгоритм Сильвера  Полига  Хеллмана)  детерминированный алгоритм дискретного логарифмирования в кольце вычетов по модулю простого числа. Одной из особенностью алгоритма является то,… …   Википедия

  • Калика-пурана — Статья по тематике Литература индуизма Веды Риг · Яджур …   Википедия

  • Флаг Ломоносова — Флаг муниципального образования город Ломоносов Ломоносов Санкт Петербург Россия …   Википедия

  • Прикладной анализ поведения — Эта статья содержит незавершённый перевод с английского языка. Вы можете помочь проекту, переведя её до конца. Прикладной анализ поведения (англ.  …   Википедия

  • Памятник Белому Биму — Памятник Памятник Белому Биму Белый Бим Чёрное ухо …   Википедия

  • ADX (формат файла) — У этого термина существуют и другие значения, см. ADX. CRI ADX Тип Кодек / формат файла Разработчик …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»